

Exploring and Using MISR Aerosol, Cloud, and Plume Data

Abigail Nastan, Walt Baskin, Susan Haberer, Michael J. Garay, Ralph A. Kahn, Kevin J. Mueller, Mika G. Tosca, Makhan Virdi, Jeff Walter, and the MISR Team

AGU Fall Meeting, December 10, 2018

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Schedule

8:00: Introduction to the MISR instrument and data products Abigail Nastan, JPL

8:30: Obtaining MISR data from the ASDC DAAC using the MISR Order Tool, ASDC Datapool, NASA Worldview, and NASA Earthdata Search Makhan Virdi and Walt Baskin, ASDC

9:15: Visualizing and analyzing MISR L2 Cloud products Michael Garay, JPL

10:00: Break

10:15: Visualizing and analyzing MISR L2 Aerosol products Ralph Kahn, NASA Goddard, and Michael Garay, JPL

11:00: Visualizing and analyzing MISR Plume Height Project data Mika Tosca, School of the Art Institute of Chicago and JPL

11:45: Discussion and questions

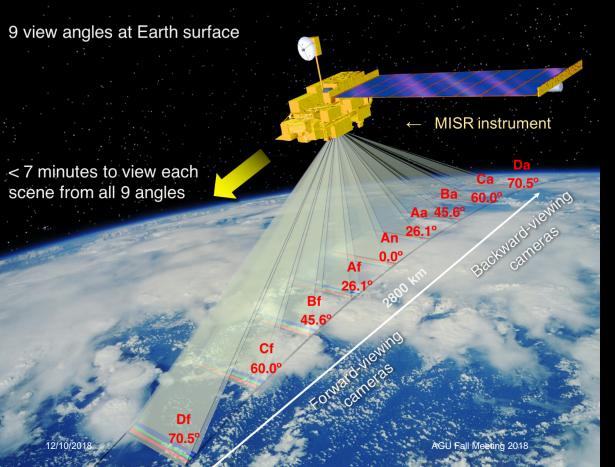
Logistics

Wifi

Network: HyattMeeting

Password: WORKSHOPS

Food/Drink


Continental breakfast: Until 9:30

Coffee/tea break: 10:00-11:00 (beverages only)

Slides will be distributed after the workshop

MISR fast facts

Platform: Terra

Launch: 12/10/1999

Data record: 2/2000 – present

9 cameras

446, 558, 672, and 867 nm

9-day global coverage

Daytime imagery only

MISR instrument photos

"Family portrait"

In JPL space simulator

V-9 Optical bench

On Terra

Undergoing tests

Launch 6 jpl.nasa.gov

Why 9 cameras?

- 1. Change in reflectance with angle distinguishes different types of aerosols, and surface structure
 - 2. Oblique slant paths through the atmosphere enhance sensitivity to aerosols and thin cirrus
 - 3. Stereo imaging provides geometric heights of clouds and aerosol plumes
 - 4. Cloud motion, derived from time lapse (< 7 min) between cameras (forward to backward views), permits determination of winds aloft
 - 5. Different observation angles enable sun glint avoidance or accentuation
 - 6. Integration over angle is required to accurately estimate hemispherical reflectance (albedo)

R: 275 m resolution B,G,N: 1.1 km resolution 70.5° forward-looking

R: 275 m resolution B,G,N: 1.1 km resolutio 60.0° forward-looking

R: 275 m resolution B,G,N: 1.1 km resolution

45.6° forward-looking

R: 275 m resolution B,G,N: 1.1 km resolution

R,G,B,N: 275 m resolution

26.1° backward-looking

R: 275 m resolution

B,G,N: 1.1 km resolution

Downward-viewing

Ba R: 275 m resolution

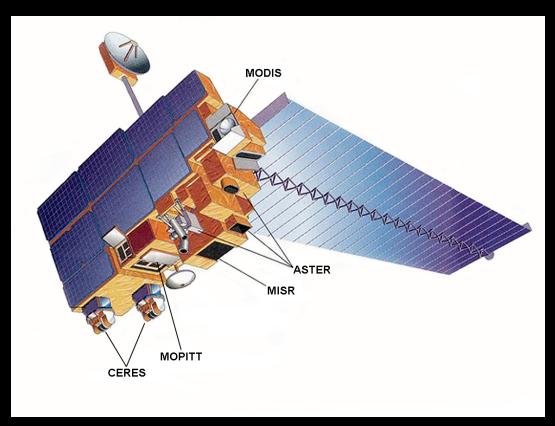
B,G,N: 1.1 km resolution

R: 275 m resolution B,G,N: 1.1 km resolution

70.5° backward-looking

B,G,N: 1.1 km resolution

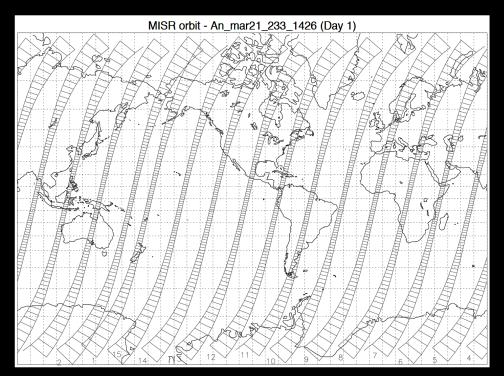
Da


275 m resolution

45.6° backward-looking

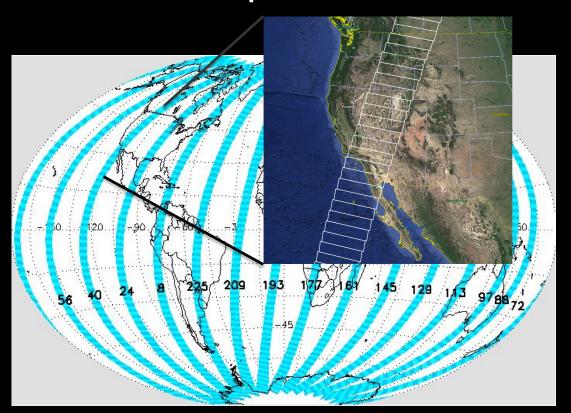
60.0° backward-looking

26.1° forward-looking


Terra fast facts

Terra carries 5 instruments:

- ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
- CERES (Clouds and the Earth's Radiant Energy System)
- MISR (Multi-angle Imaging SpectroRadiometer)
- MODIS (Moderate-resolution Imaging Spectro-radiometer)
- MOPITT (Measurement of Pollution in the Troposphere)

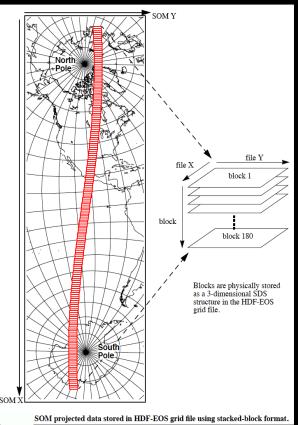

Terra orbit

Terra orbit characteristics:

- Altitude: 705 km (low-Earth)
- Period: 99 minutes
- Sun-synchronous: orbital plane precesses with the same period as the earth's solar orbit period
- Descending: travels from N to S on earth's day side (ascends on night side)
- 10:30 am crossing time: Crosses equator at 10:30 am local time on the day side for every orbit
- Repeating: Orbital pattern repeats every 16 days

MISR orbit/path convention

Terra **orbits** the earth 15 times/day.


Orbit numbers indicate the number of revolutions since launch.

233 distinct orbit paths repeat every 16 days.

Each path is divided into 180 blocks.

Paths overlap, allowing near global coverage in 9 days.

MISR Space Oblique Mercator projection

12/10/2018

A separate **SOM projection** is defined for each of MISR's 233 paths.

SOM minimizes re-sampling distortions

The **origin** of each path is where the satellite crosses the ascending node – the equator on the night side

Satellite **ground track** defines a curved line on earth's surface that becomes the center of a modified oblique Mercator projection called Space Oblique Mercator (SOM)

The MISR data products

The MISR filename convention

MISR_AM1_GRP_TERRAIN_GM_P028_O002510_AN_F03_0024_b058-062.hdf

MISR - instrument name - constant for all MISR products

AM1 - satellite name - constant for all MISR products

GRP_TERRAIN - MISR product type

- acquisition mode (if pertinent: GM = Global Mode, LM = Local Mode)

P028 - TERRA Path number (1 - 233)

O002510 - TERRA Orbit number (995 – 100971+)

AN - camera name (if pertinent: DF, CF, BF, AF, AN, AA, BA, CA, DA)

- format version number (format of product file)

- product version number (algorithm that created product)

b058-062 - block range (if file was subsetted during the data ordering process)

hdf - hierarchical data format (standard HDF-EOS file structure)

12/10/2018 AGU Fall Meeting 2018 14 jpl.nasa.gov

The MISR data products

Level	Name	Example uses
1	Radiance data	Images
2	Cloud/stereo data	Cloud-top heights, cloud motion vectors
2	Aerosol data	Aerosol climatologies, PM studies
2	Land surface data	Vegetation health
2	TOA/albedo data	Climate studies
2.5	Plume height project	Global wildfire plume heights
3	Radiance, aerosol, aerosol, and surface	Global-scale, long-term studies
3	Aerosol joint	Global-scale, coarse-resolution particle properties
3	Cloud motion vector	Wind climatologies

The role of Distributed Active Archive Centers

The MISR project	Our DAAC (ASDC)
 Developed instrument Develop and test algorithms Deliver working code to ASDC to produce data products Deliver special data products (plume project) 	 Receives raw instrument data Processes data through the algorithms Stores completed data products Provides public access to data products

misr.jpl.nasa.gov

eosweb.larc.nasa.gov